GCE

Mathematics A

H240/02: Pure Mathematics and Statistics

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by *
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question included the instruction: In this question you must show detailed reasoning.
DR	

Subject-specific Marking Instructions for A Level Mathematics A

Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.
E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value

When a value is not given in the paper accept any answer that agrees with the correct value to $\mathbf{3}$ s.f. unless the question specifically asks for another level of accuracy.
NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads " 2 s.f"
Follow through should be used so that only one mark is lost for each distinct accuracy error.
Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
If in any case the scheme operates with considerable unfairness consult your Team Leader.

			FinalVersion				
Question			Answer	Mark	A0	Guidan	
			NB Answers must be correct to 3 sf, except where otherwise indicated. If correct answer seen (to $\geq \mathbf{3}$ sf), ignore later rounding.				
1						Ignore incorrect \int or $\mathbf{d} \boldsymbol{x}$ in all parts	
1	(a)	(i)	$\begin{aligned} & \frac{(2 x+1) \times 2 x-x^{2} \times 2}{(2 x+1)^{2}} \text { oe } \\ & \left(\mathrm{eg}=\frac{2 x^{2}+2 x}{(2 x+1)^{2}} \text { or } \frac{2 x(x+1)}{(2 x+1)^{2}} \text { oe }\right) \end{aligned}$ Alternative method $x^{2}(-2)(2 x+1)^{-2}+2 x(2 x+1)^{-1}$ oe	B1 B1 B1 [3]	$\begin{gathered} 1.1 \mathbf{a} \\ 1.1 \\ 1.1 \end{gathered}$	$2 x(2 x+1) \underline{\text { or }}-2 x^{2}$ oe in numerator B1 Correct denominator Correct numerator B1 No need to see this B1 $\pm 2 x^{2}(2 x+1)^{-2}$ oe $+2 x(2 x+1)^{-1}$ oe	Condone missing brackets 1st B1 Allow correct equivalent forms ISW for further "simplifications" Allow correct equivalent forms ISW for further "simplifications"
1	(a)	(ii)	$(2 x-3) \sec ^{2}\left(x^{2}-3 x\right)$ oe	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.1 \mathbf{a} \\ 1.1 \end{gathered}$	B1 for $\sec ^{2}\left(x^{2}-3 x\right)$ B1 for all correct	Condone missing brackets 1st B1 Condone $\sec ^{2}\left(x^{2}-3 x\right)(2 x-3)$ ISW for further "simplifications"
			Allow without mod in both parts (b) and (c)				
1	(b)		$x=(u+1)^{2}, \frac{\mathrm{~d} x}{\mathrm{~d} u}=2(u+1)$ oe or $\frac{\mathrm{d} u}{\mathrm{~d} x}=0.5 x^{-0.5} \quad$ oe $2 \int \frac{(u+1)}{u} \mathrm{~d} u$ or $2 \int\left(1+\frac{1}{u}\right) \mathrm{d} u$ oe $\begin{equation*} =2(u+\ln \|u\|) \tag{+c} \end{equation*}$ $=2(\sqrt{x}-1+\ln \|\sqrt{x}-1\|)+c$ oe or $2(\sqrt{x}+\ln \|\sqrt{x}-1\|)+c \quad$ oe or $2 \sqrt{x}+\ln (\sqrt{x}-1)^{2}+c \quad$ oe	M1 A1 A1 A1 [4]	1.1a 2.5 2.1 1.1	EITHER attempt x in terms of $u \&$ diff $^{\prime}$ OR attempt $\frac{\mathrm{d} u}{\mathrm{~d} x} \&$ obtain $k x^{-0.5}$ oe Allow $k \int \frac{(u+1)}{u} \mathrm{~d} u$ or $k \int\left(1+\frac{1}{u}\right) \mathrm{d} u$ Allow without $+c$ here All correct incl $+c$	Allow in form $\mathrm{d} x=\ldots$ or $\mathrm{d} u=\ldots$ or $\int \frac{(k u+j)}{u} \mathrm{~d} u$ or $\int\left(k+\frac{j}{u}\right) \mathrm{d} u$ Not penalise $+c$ in both (b) $\mathcal{\&}(\mathbf{c})$ ISW for further "simplifications" Integration by parts: Use same scheme.

1	(c)		$\begin{array}{ll} \ln \left\|2 x^{2}-8 x-1\right\| & \text { or } \ln \left\|\frac{1}{2} x^{2}-2 x-\frac{1}{4}\right\| \quad \text { seen } \\ \frac{1}{4} \ln \left\|2 x^{2}-8 x-1\right\|+c & \text { or } \frac{1}{4} \ln \left\|\frac{1}{2} x^{2}-2 x-\frac{1}{4}\right\|+c \end{array}$	M1 A1 [2]	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	or $u=2 x^{2}-8 x-1$ and $\ln \|u\|$ seen All correct including $+c$ Correct answer seen: M1A1 even if eg $(x-2) \frac{\ln \left\|2 x^{2}-8 x-1\right\|}{4 x-8}=\frac{1}{4} \ln \left\|2 x^{2}-8 x-1\right\|$	or $u=x-2$ and $\ln \left\|2 u^{2}-9\right\|$ seen Not penalise $+c$ in both (b) $\mathcal{E}(\mathbf{c})$ ISW for further "simplifications
2	(a)		$=-48384 \quad$ or -48400	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	1.1	Allow - $48384 x^{5}$	
2	(b)	(i)	$\begin{aligned} & 1+0.5 \times 3 x+\frac{0.5 \times(-0.5)}{2} \times(3 x)^{2} \\ & \quad+\frac{0.5 \times(-0.5)(-1.5)}{3!} \times(3 x)^{3} \\ & =1+\frac{3}{2} x-\frac{9}{8} x^{2}+\frac{27}{16} x^{3} \\ & \text { or } 1+1.5 x-1.125 x^{2}+1.6875 x^{3} \end{aligned}$	M1 A1 A1 [3]	$\begin{gathered} 1.1 \mathbf{a} \\ 1.1 \\ 1.1 \end{gathered}$	M1 for at least 3 terms correct Condone any missing brackets A1 for 3 terms correct A1 for all correct	$\text { SC } 1+\frac{3}{2} x-\frac{3}{8} x^{2}+\frac{3}{16} x^{3}: \quad \text { M1 }$
2	(b)	(ii)	$-\frac{1}{3}<x<\frac{1}{3}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	1.2	Allow $\|x\|<\frac{1}{3}$	
2	(b)	(iii)	Sub $x=0.01$ in their expansion gives $\sqrt{1.03}=1.014889 \ldots$ From series $\quad \sqrt{103}=10.14889(188 \ldots)$ From calculator $\sqrt{103}=10.14889(157 \ldots)$ (Hence expansion may be correct)	M1 A1 A1 [3]	3.1a 1.1 2.2b	Allow 1.01489 here (5 dps for series) If no working seen, 10.1488919 or better must be seen as evidence that series has been used. Both these must be seen for A1 Allow without statement	Other correct methods may be seen, eg subst $x=0.2 \& \sqrt{1.6}$ 5 dps for $\sqrt{103}$ in both

3	(a)	(i)	$\begin{aligned} & (x-3)^{2}+(y+4)^{2}=4 \cos ^{2} \theta+4 \sin ^{2} \theta \\ & \Rightarrow(x-3)^{2}+(y+4)^{2}=4 \text { oe ISW } \end{aligned}$	M1 A1 [2]	3.1a 2.1	or $\left(\frac{x-3}{2}\right)^{2}+\left(\frac{y+4}{2}\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta$ or $\left(\frac{x-3}{2}\right)^{2}+\left(\frac{y+4}{2}\right)^{2}=1$ oe or $\cos ^{-1}\left(\frac{x-3}{2}\right)=\sin ^{-1}\left(\frac{y+4}{2}\right)$ M1A1 ISW for all answers	Condone sign errors or one arith slip or missing brackets for M1 or $y=-4+2 \sqrt{1-\left(\frac{x-3}{2}\right)^{2}}$ M1A1 or similar with $x=$ or $y=-4+2 \sin \left(\cos ^{-1} \frac{x-3}{2}\right)$ M1A1 or similar with $x=$
3	(a)	(ii)	Centre ($3,-4$), radius 2	$\begin{array}{r} \text { B1f } \\ {[1]} \\ \hline \end{array}$	2.2a	ft their (i) if both consistent with (i) But if absolutely correct, not ft : B1.	
3	(b)		DR NB Allow decimals to 2 sf instead of surds thoughout, except answer to 3 sf $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t} \\ & =-\frac{1}{2} \cot t \text { or }-\frac{1}{2} \frac{\cos t}{\sin t} \end{aligned}$ $t=\frac{\pi}{6}: \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2} \cot \frac{\pi}{6}$ oe or $-\frac{\sqrt{3}}{2}$ oe Alternative methods for gradient $\begin{align*} & \left(\frac{x}{4}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1, \quad \frac{x}{8}+\frac{y}{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad \text { M1 } \tag{M1}\\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{4 y} \\ & t=\frac{\pi}{6}: \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 \cos \left(\frac{\pi}{6}\right)}{8 \sin \left(\frac{\pi}{6}\right)} \text { or }-\frac{1}{2} \cot \frac{\pi}{6} \text { or }-\frac{\sqrt{3}}{2} \text { M1 } \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \\ & 1.1 \end{aligned}$	Attempt diff $x \& y$ wrt $t \&$ find $\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$ soi Substitute $t=\frac{\pi}{6}$ in their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Attempt cartesian equn \& differentiation soi Substitute $t=\frac{\pi}{6}$ in x (and $\left.y\right) \&$ their $\frac{\mathrm{d} y}{\mathrm{~d} x}$	Allow sign error $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(0.5\left(16-x^{2}\right)^{-0.5}\right) \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4}\left(16-x^{2}\right)^{-0.5}(-2 x) \text { oe } \end{aligned}$

			Equn of L is $y-2 \sin \frac{\pi}{6}=-\frac{\sqrt{3}}{2}\left(x-4 \cos \frac{\pi}{6}\right) \quad$ oe or $y-1=-\frac{\sqrt{3}}{2}(x-2 \sqrt{3})$ oe $0-1=-\frac{\sqrt{3}}{2} x+3$ oe Cuts at $\left(\frac{8 \sqrt{3}}{3}, 0\right)$ oe or $(4.62,0)(3 \mathrm{sf})$	M1 M1 A1 [6]	1.1 1.1 2.2a	or $y=-\frac{\sqrt{3}}{2} x+c \underline{\boldsymbol{\&}} \operatorname{subst}\left(4 \cos \frac{\pi}{6}, 2 \sin \frac{\pi}{6}\right)$ or $y=-\frac{\sqrt{3}}{2} x+4$ oe or $0=-\frac{\sqrt{3}}{2} x+4 \quad$ oe Allow just $\frac{8 \sqrt{3}}{3}$ or $4.62(3 \mathrm{sf})$	ft their grad (not -ve reciprocal) Must not involve t This mark may be implied by next mark Subst $y=0$ in their line equn, not involving t Allow equivalents, eg $\frac{8}{\sqrt{3}}$
4			In all parts ignore nos except $\mathbf{2 0}, \boldsymbol{\&} 1020$			BOD if describe growth rather than rate in (a) and (b)	Condone muddle between P and growth of P in (a) and (b)
4	(a)		A: Growth (rate) increases, then decreases Grows slowly, then quickly, then slowly B: Growth (rate) decreases Grows quickly then slowly	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.2b	Allow increase, constant, then decrease or "levels off", "tails off", "plateaus" Allow "levels off", "tails off", "plateaus"	NOT " P " decreases, for A or B Ignore "exponentially"
4	(b)	(i)	$\begin{aligned} & \text { A: } P \text { (decreases and) tends to } 20 \\ & \text { or (Decreases and) doesn't go below } 20 \end{aligned}$	B1 [1]	3.4	Allow (Decrease and) reach 20, Must mention 20 (as population, not years)	Ignore all else
4	(b)	(ii)	B: P tends to 1020 oe P doesn't exceed 1020	B1 [1]	3.4	Growth is asymptotic around 1020 Settles at 1020. Saturates at 1020 Converges to 1020. Allow reaches 1020 Plateaus at 1020. Asymptote at 1020 Must mention 1020	NOT: Pop increases, but slowly Diverges to 1020 Tends to 1020, then down Ignore all else
4	(c)	(i)	A: Food (almost) runs out, or is used up oe or becomes very low or there will be a shortage oe or begins to run out	B1 [1]	3.5a	or will only support a population of 20 Won't sustain large nos. Insufficient NB "Limited" allowed in c(ii), not c(i)	NOT: just Limited, Finite NOT: just "Decreases" Ignore all else
4	(c)	(ii)	B: Food sufficient to support a pop ≈ 1020 Enough to sustain equilibrium (or population) Barely enough, can't support increase in P Food limited so pop can't continue to grow	B1 [1]	3.5a	Stays stable Sustainable Constant	Must imply at least two of: 1. Food won't run out and 2. Food limited or equilibrium 3. Can't support increase in P Ignore all else

				[2]			
8	(c)		Less (or not) affected by the outlier or anomaly 99 Mean (more) affected by the outlier of 99	$\begin{array}{r} \text { B1 } \\ {[1]} \\ \hline \end{array}$	1.1	oe, but must mention 99 Allow "Median is less skewed by the 99"	Ignore all else, eg "more accurate"
9	(a)	(i)	0.761 or 0.762 (3 sf)	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	BC Allow 0.76	
9	(a)	(ii)	62.0 (3 sf)	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	BC Allow 62 or 61.9	Allow $m \geq 62.0$
9	(a)	(iii)	Use of \bar{X} eg " \bar{X} " or "mean" or $\frac{18}{10}$ or $\sqrt{\frac{18}{10}}$ $\begin{aligned} & \bar{X} \sim \mathrm{~N}\left(55, \frac{18}{10}\right) \\ & \mathrm{P}\left(\bar{X}<\frac{530}{10}\right) \quad \operatorname{dep} \sigma^{2}=\frac{18}{10} \\ & =0.0680(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 A1 [4]	$\begin{gathered} 1.1 \mathbf{a} \\ 3.3 \\ 3.4 \\ 1.1 \end{gathered}$	$\begin{aligned} & \mu=550 \text { seen or implied } \\ & \Sigma X \sim \mathrm{~N}(550,180) \quad \text { Correct } \\ & \mathrm{P}(\Sigma X<530) \text { dep } \sigma^{2}=\mathbf{1 8 0} \\ & =0.0680(3 \mathrm{sf}) \quad \text { Allow } \mathbf{0 . 0 6 8} \end{aligned}$	May be implied Stated or implied Correct answer from limited (or no) working: M1M1M1A1
9	(b)		$\mathrm{P}(Y<72)=0.75$ $\mathrm{P}(Y<62)=0.25$ $\Phi^{-1}(0.75)$ or 0.674 $\Phi^{-1}(0.25)$ or -0.674 $\frac{72-67}{\sigma}$ $\frac{62-67}{\sigma}$ $\frac{72-67}{\sigma}=0.674$ $\frac{62-67}{\sigma}=-0.674$ $\sigma=7.41$ or $7.42(3 \mathrm{sf})$ Trial and Improvement $\Phi^{-1}(0.75)$ or 0.674 or $\Phi^{-1}(0.25)$ or -0.674 $\operatorname{eg} \sigma=8: \quad 67-8 \times 0.674=61.6$ $\sigma=7: \quad 67-7 \times 0.674=62.3$ $\sigma=7.41: 67-7.41 \times 0.674=62.0 \Rightarrow \sigma=7.41$ or $\sigma=7.42: 67-7.42 \times 0.674=62.0 \quad \Rightarrow \sigma=7.42$	M1 M1 M1 A1 A1 M2 M1 A1 A1	3.1b 2.4 2.1 1.1 1.1	oe May be implied, eg on diagram ± 0.674 implies M1M1 Allow 0.67 oe, eg $5=0.674 \sigma$ A1 for correct equn, allow 0.67 SC correct answer with no working or irrelevant working: SC B3 (because "determine" rather than "find") May be implied At least one correct trial Trials leading to values either side of 62 Correct trial using $\sigma=7.41$ or 7.42 and conclusion $\sigma=7.41$ or 7.42	NB P $(62<Y<72)=0.5$ no mks yet M1M1M1 may be implied by A1 Must be seen or SC B2 if correct to 2 sf

			"We can assume that level hasn't changed"			ft only ** above	"Mean level has not changed "A0
				[7]			
11	(a)			B1 B1 [2]	$\begin{aligned} & 2.2 b \\ & 2.2 b \end{aligned}$	$\begin{aligned} & \text { Allow } \geq \text { and } \leq \\ & \text { SC: } 0.25<k<1.4: \quad \mathrm{B} 1 \mathrm{~B} 0 \\ & \quad(\text { ranges as on left }) \end{aligned}$	Allow " x "
11	(b)	(i)	$\begin{aligned} & 0.797>0.5577 \text { or }-0.797<-0.5577 \\ & \text { or }\|-0.797\|>0.5577 \end{aligned}$	$\begin{aligned} & \mathbf{B 2} \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3.1b } \\ & \text { 3.2a } \end{aligned}$	$\begin{array}{ll} \hline 0.797>0.6055 \text { or }-0.797<-0.6055 & \text { B1 } \\ \pm 0.5577 & \text { B1 } \end{array}$	Allow \geq or \leq
11	(b)	(ii)	There are clusters (or groups etc.) Apparent good correlation caused by clusters or Two clusters with no -ve corr'n within them or a comment similar to one of the above. AND Conclusion unreliable or Value of r is misleading oe	$\begin{gathered} \mathbf{B 1}^{*} \\ \\ \\ \text { B1 } \\ \operatorname{dep} \text { B1* } \\ {[2]} \\ \hline \end{gathered}$	2.3 3.5b	or Not bivariate normal distribution B1 so use of tables for r not valid B1	NOT Too scattered Not represent whole pop Small sample Clusters not on reg line B1B0
11	(c)		High prop of 65+ or Low prop of 18-24 Prop of young very similar, or ≈ 0.06 Proportion of senior to young is high	B1 [1]	2.2b	If consider only one age-group, must be proportion not number If consider both age-groups, allow eg Higher number of seniors than young or Many seniors, few young	NOT: Similar proportions of 65+ Population is elderly
11	(d)		Top left points contain high prop of 18-24s. (So these LAs may be areas where there are universities or where they can recruit)	B1 [1]	2.2b	Shows places where large nos of 18-24s Shows where to focus recruiting. So universities can recruit. $18-24 \mathrm{~s}$ are their target group. No need to specify "Top left group"	Allow "students" or "young" instead of "18-24s" Any implication that diagram enables you to see information about location of young people
12	(a)		$\begin{aligned} & k(1+2+3+4+5) \quad(=1) \\ & k=\frac{1}{15} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.1 \end{aligned}$	Allow 15k (= 1) May be implied	

Exemplars for Q10

Hypotheses

A $\quad \mathrm{H}_{0}: \mu=0.034$
$\mathrm{H}_{1}: \mu \neq 0.034$ where $\mu=$ (pop) mean pollutant level
B1B1
B $\quad \mathrm{H}_{0}: \mu=0.034$
$\mathrm{H}_{1}: \mu \neq 0.034$
B1B0
C $\quad \mathrm{H}_{0}$: The (pop) mean pollutant level is 0.034
H_{1} : The (pop) mean pollutant level is not 0.034
1B0

D $\quad \mathrm{H}_{0}=0.034$
$\mathrm{H}_{0} \neq 0.034$
B0B0
E $\quad \mathrm{H}_{0}: \mu=0.034$
$\mathrm{H}_{1}: \mu=0.0325$ where $\mu=$ (pop) mean pollutant level

Probability and conclusion

F No statement of distribution $\mathrm{P}(\bar{X}=0.0325)=0.0486$
$0.0486>0.025$
A1
Don't reject H_{0}
M1
Likely that mean level of pollutant hasn't changed A1
$\mathrm{G} \quad \mathrm{P}(\bar{X}=0.0325)=0.0486 \quad \mathrm{M} 1 \mathrm{~A} 1$
$0.0486>0.025$
Accept H_{0}
A1
There is evidence that mean level of poll'nt hasn't changed
A0
H $\mathrm{P}(\bar{X}<0.0325)=0.951 \quad \mathrm{M} 1 \mathrm{~A} 0$
$0.951>0.025$
Insufficient evidence that poll't level has changed

I $\quad \mathrm{P}(\bar{X}>0.0325)=0.951$
$0.951>0.025$
Sufficient evidence that mean poll't level has changed
J $\quad \bar{X} \sim \mathrm{~N}(0.034,0.000000818)$
$\mathrm{P}(\bar{X}<0.0325)=0.013$
$0.013<0.025$
Sufficient evidence that level has changed
M1A1
A0
M0A0

M1A0
A0
M1A1

K $\mu \pm 1.96 \sigma=0.0322$ to 0.0358
0.0325 lies within this range

Reject H_{1}
Insufficient evidence that level of poll't has decreased
L $\quad \mathrm{CV}=0.0322$
$0.0325>0.0322$
Reject H_{0}. Evidence that level of poll't has changed.
M (0.0322-0.034) $\div \sqrt{0.0000409 / 50}=-1.66$
$1.66<1.96$
Don't reject H_{0}. Level of poll't hasn't changed.

1-tail

N $\quad \mathrm{H}_{0}: \mu=0.034$
$\mathrm{H}_{1}: \mu<0.034$ where $\mu=$ (pop) mean pollutant level
O $\quad \mathrm{H}_{0}: \mu=0.034$
$\mathrm{H}_{1}: \mu<0.034$
P $\quad \mathrm{H}_{0}$: The (pop) mean pollutant level is 0.034
H_{1} : The (pop) mean pollutant level is less than 0.034

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

